

V2S-R7 FPGA Engineering Specification

System Design Division

Document number:V2S-R7 EISDate of Issue:August 23, 2012Authors:SDPL

© Copyright ARM Limited 2010-2012. All rights reserved.

Abstract

This document describes a Cortex-R7 Soft Macrocell Model implemented using LogicTile *Express* 13MG V2F-2XV6 board.

Keywords

Cortex, R7, FPGA, SMM, CoreSight, Versatile Express Platform.

Contents

1	ABC 1.1	OUT THIS DOCUMENT Change control 1.1.1 Current status and anticipated changes	3 3 3
	1.2	1.1.2 Change history References	3
	1.2	Terms and abbreviations	3 4
2	SCC	PE	5
3	INTE	RODUCTION	5
4	GET	TING STARTED	6
5	OVE	RVIEW	7
	5.1	General overview	7
		5.1.1 Processor configurations	7
	5.2	5.1.2 System level features	7
	5.2	Debug features 5.2.1 CoreSight Sub-System	7
		5.2.2 Debugger Access	o 9
	5.3	FPGA Hardware	9
	5.4	System Level Design	10
	••••	5.4.1 PL341 Dynamic Memory Controller	12
		5.4.2 SCC controller	12
		5.4.3 PL354 Static Memory Controller	12
		5.4.4 ACP port	12
		5.4.5 DMA controller	12
		5.4.6 ZBT RAM controller	12
		5.4.7 HCLCD controller	13
		5.4.8 L2C-310 Level 2 Cache	13
		5.4.9 CoreSight	13
	5.5	5.4.10Cortex-R7 Clock architecture	13 14
	5.5	5.5.1 Default, minimum and maximum operating frequencies	14
6	MEN		15
-	6.1	SCC/APB Register block	18
7	INTE	ERRUPTS AND EVENTS SIGNALS	20
	7.1	Interrupts	20

1 ABOUT THIS DOCUMENT

1.1 Change control

1.1.1 Current status and anticipated changes

1.1.2 Change history

Brief descriptions of major changes are also described here:

	Status	Remark
1.0	First Release	

1.2 References

This document refers to the following other documents:

Ref	Doc No	Author(s)	Title
[1]	ARM DUI 0447F	ARM Ltd.	Motherboard <i>Express</i> µATX (V2M-P1) TRM
[2]	ARM DDI 0424A	ARM Ltd.	PrimeCell DMA Controller (PL330) Revision:r0p0 TRM
[3]	ARM DDI 0397F	ARM Ltd.	AMBA Network Interconnect (NIC-301) Revision:r2p0 TRM
[4]	ARM DDI 0246F	ARM Ltd.	Level 2 Cache Controller (L2C-310) Revision: r3p2 TRM
[5]	ARM DDI 0418C	ARM Ltd.	DDR2 Dynamic Memory Controller (PL341) Revision: r0p1 TRM

1.3 Terms and abbreviations

This document uses the following terms and abbreviations.

	5
Term	Meaning
AMBA	Advanced Microcontroller Bus Architecture
ACP	AXI Coherence Port
APB	Advanced Peripheral Bus
ATB	Advanced Trace Bus
AXI	Advanced eXtensible Interface
SCC	System Configuration Controller
DAP	Debug Access Port
DMAC	Direct Memory Access Control
ECC	Error Correction Code
ETB	Embedded Trace Buffer
FPU	Floating-Point Unit
MPU	Memory Protection Unit
PIL	Processor Integration Layer
ETM	Embedded Trace Macro-cell
ETR	Embedded Trace Router
ETF	Embedded Trace FIFO
HPM	High Performance Matrix
LLPP	Low Latency Peripheral Port
SCU	Snoop Control Unit
SVN	SubVersioN, a version control system
ТСМ	Tightly Coupled Memory
TPIU	Trace Port Interface Unit
VIC	Vectored Interrupt Controller
V2	Versatile Express
SMM	Soft Macrocell Model
SMC	Static Memory Controller
DMC	Dynamic Memory Controller
DMA	Direct Memory Access
DCC	Daughterboard Configuration Controller
MMCM	Mixed-Mode Clock Manager

2 SCOPE

This document describes features that are unique to the Cortex-R7 Soft Macrocell Model (SMM) implemented on a LogicTile *Express* 13MG (V2F-2XV6). It will examine the contents of the SMM-R7, system interconnect, the clock structure, and specifics of the programmer's model directly relevant to SMM-R7 operation.

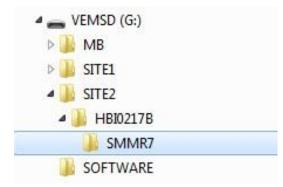
3 INTRODUCTION

In this configuration of the Cortex-R7 FPGA the Cortex-R7 CPU is implemented in an MP2 Split-Lock configuration. Processor nCPUHALT, SAFEMODE & COMPENABLE CPU features are controlled by the SCC peripheral in the 760 FPGA details of which can be found in section <u>6.1</u>.

This FPGA image is a Cortex-R7 derivative processor that implements (in addition to existing CR7 features) the following:

- Internal matrix synchronous to core clock.
- CoreSight sub-system with JTAG, Serial Wire and Trace support internally and on board.
- Asynchronous bridges to DDR memory and SMC interface.
- Up to 2GB of DDR2 using SODIMM module,
- SMC for Versatile *Express* motherboard accesses, additional peripherals (DMC, video/CLCD, DMA) included.
- 16MB of on board ZBTRAM synchronous to core.
- Internal HDCLCD controller.

4 GETTING STARTED


- 1. The SMM R7 operates on an ARM LogicTile *Express* 13MG (V2F-2XV6) daughterboard mounted on a Versatile *Express* motherboard (V2M-P1).
- 2. Ensure the LogicTile *Express* 13MG daughterboard is plugged into Site 2 of the Versatile *Express* Motherboard as described in

Quick Start Guide for the Versatile Express Family - Adding Daughterboards.

- 3. Install the SMM R7 FPGA images and support files from the V2S-R7 installation CD onto a host computer running Microsoft Windows.
- 4. Connect USB, UARTO, and power to the Versatile *Express* motherboard, and power up as described in **Quick Start Guide for the Versatile** *Express* **Family Powering up the System**.
- 5. Copy the SMM R7 FPGA images from the host computer to the motherboard as follows:
 - a. Turn the USB controller of the motherboard ON by pressing the black button on the rear panel and then typing the command '*usb_on*'

```
Cmd> usb_on
Enabling debug USB...
```

- b. Access the motherboard from the host computer by opening the USB mass storage device.
- c. From the host computer, copy the contents of the V2S-R7 Recovery directory to the USB mass storage device. The directory tree on the USB device should be similar to the illustration below:

- 6. Power cycle the motherboard, then press the black button.
- 7. Type the command 'reboot'.
- 8. The motherboard will configure the LogicTile *Express* 13MG daughterboard and the SMM R7 will begin running the Boot Monitor.

5 OVERVIEW

5.1 General overview

The SMM is based on R7 r0p0. The R7 Integration Level is used with additional logic wrapped around it.

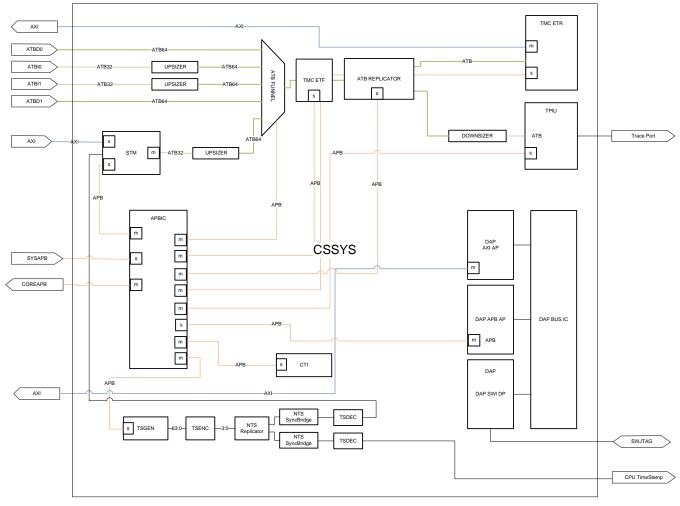
5.1.1 Processor configuration

Processor feature	Configuration	Notes
I-cache	CPU 0 : 16KB	-
	CPU 1 : 16KB	
D-cache	CPU 0 : 16KB	-
	CPU 1 : 16KB	
MPU	12 or 16 regions	-
	(synthesis option)	
ТСМ	CPU 0 : 64KB x 2	-
	CPU 1 : 64KB x 2	
FPU	CPU 0 : Yes	-
	CPU 1 : Yes	
SCU	Present	-

Table 5.1 Processor Configuration

5.1.2 System level features

System feature	Configuration	Notes	
Level 2 cache	Present	- Connected to AXI master port and to AXI Bus Matrix (NIC301) slave port	
AXI slave ports	Present	to AXI Bus Matrix (NIC301) and to CoreSight	
AXI LLPP	Present	to AXI Bus Matrix (NIC301)	
AHB LLPP	Not supported	Tied off	
GIC	Not Included		
DMA	Included	to AXI Bus Matrix (NIC301)	
Table 5.2 System level features			


5.2 Debug features

Debug feature	Configuration	Notes	
ЕТМ	2 Present	One for each processor. Located in the PIL	
CoreSight Hugo	Present	Include CSTPIU, TMC-ETF. TMC-ETR, STM, CTI, DAP-AXIAP, DAP-APBAP & DAP-SWIDP	
ROM table	Two	Primary ROM table for CSSYS Secondary ROM table for for PIL	

Table 5.3 Debug features

5.2.1 CoreSight Sub-System

The debug sub-system is a configuration of the Hugo CoreSight system. It features dual ATB interfaces, DAP SWI DP, TPIU (32-bit port width) for trace and TMC-ETR for trace data buffering.

Figure 1 CoreSight Sub-System

Table 1 details the connectivity between the CTI TRIGOUT / TRIGIN ports and the rest of the CoreSight system components.

CTI TRIGOUT			CTI TRIGIN		
0	TMC-ETR Flush	0	TMC-ETF FULL		
1	TMC-ETR TRIGIN	1	TMC-ETF ACQCOMP		
2	TPIU Flush	2	TMC-ETR FULL		
3	TPIU TRIGIN	3	TMC-ETR ACQCOMP		
4	STM HWE [0, 1] 0 inverted	4	STM TRIGOUT SPTE		
5	STM HWE [2, 3] 2 inverted	5	STM TRIGOUT SW		
6	TMC-ETF Flush	6	STM TRIGOUT HETE		
7	TMC-ETF TRIGIN	7	STM ASYNCOUT		

Table 1 CTI connectivity

Table 2 details the connectivity between each of the Cortex-R7 ETMs and the CoreSight ATB funnel ports.

ATB Funnel Connectivity			
ETM0 Data	ATB Funnel Port0		
ETM0 Instruction	ATB Funnel Port1 (via ATB upsizer 32 to 64-bit)		
ETM1 Data	ATB Funnel Port2		
ETM1 Instruction	ATB Funnel Port3 (via ATB upsizer 32 to 64-bit)		

Table 2 ETM to ATB-Funnel connectivity

5.2.2 Debugger Access

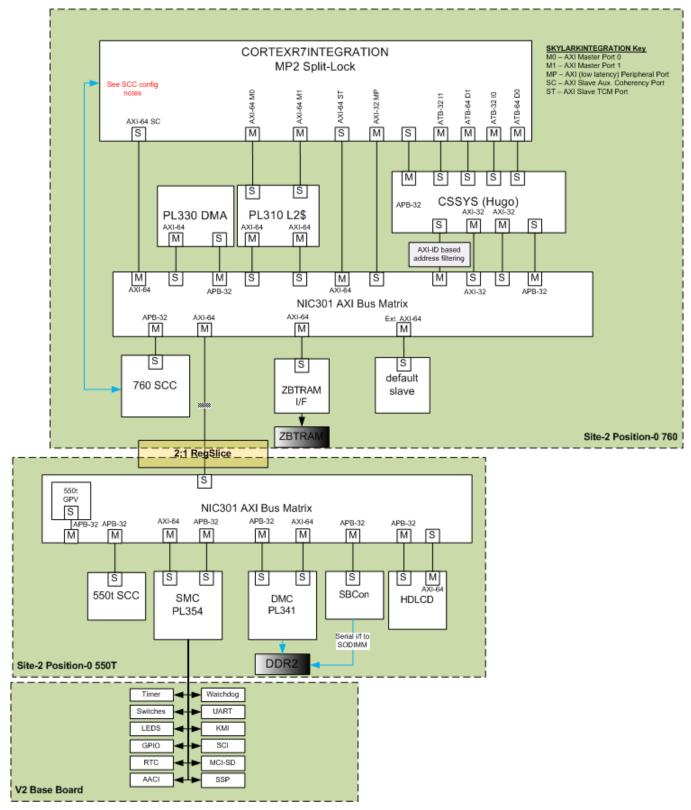

RVConfig settings for debugger access				
CoreSight AP index	0x0000 0000			
CoreSight Base Address	0xA291 0000 – CPU0 0xA291 2000 – CPU1			
Code Sequences Enabled	False			
Bypass memory protection when in debug.	True			
Clear breakpoint hardware on connect	True			
JTAG timeouts enabled	True			
Post Rest State	1 - Stopped			
Bypass the device ID check on connect	True			
Debug acceleration level	2 - None			
Enable continuous target state checking and DCC transfer	True			
Allow PRCR DBGNOPWRDWN to be set	True			
Enable SMP breakpoint mode	False			
Use CTI for synchronized execution	False			
Check DSCR dbgen bit can be set high	True			

Table 3 Debugger Settings

The DAP AXI-AP can also be used to access system components directly through the PL301-NIC matrix. To use this interface the CoreSight AP index in Table 3 should be set to 0x0000 0001. At the time of writing there is no debugger support for the DAP AXI-AP component.

5.3 FPGA Hardware

The FPGA platform is based on a single ARM LogicTile *Express* 13MG (V2F-2XV6) Virtex6 FPGA daughterboard with Versatile *Express* V2M-P1 baseboard. The processor, memory controllers and the main system logic are implemented in the FPGAs. The daughter boards and the motherboard are connected using the PL354 Static Memory Controller (SMC) via the Static Memory Bus (SMB) interface. The majority of the lower speed peripherals are implemented on the motherboard (UARTs, GPIO, etc...). This is shown in greater detail in Figure 2

5.4 System Level Design

Figure 2 System Level Design Partitioning

This SMM has two main clock domains, the 760 domain running at 40MHz and the 550t domain running at 80MHz. The 2:1 modified reg. slice component also acts as an asynchronous bridge between the two domains. Full details of all clock domains can be found in section 5.5

The design is based on the Cortex-R7 (MP2 Split-Lock), a CoreSight sub-system together with a number of system components including:

5.4.1 PL341 Dynamic Memory Controller

This is an asynchronous PL341 implementation with modified pad interface to register all I/O signals using IO pads registers.

5.4.2 SCC controller

The SCC provides a standard serial interface to a LogicTile *Express* 13MG (V2F-2XV6) Daughterboard Configuration Controller (DCC). The DCC uses this interface by issuing commands to receive/transmit information from/to the SCC registers in the FPGA.

The default state of the SCC registers is determined by the DCC during the power-up phase. The DCC reads the register values from a text file on the system SD card. During runtime the SCC registers are addressable by all masters in the system.

The SCC registers provides configuration registers for system/processor control. Please refer to Table for full details of the SCC registers.

5.4.3 PL354 Static Memory Controller

This is the Static Memory Controller used to communicate with the motherboard. The ARM PrimeCell PL354 is used in this design. The SMC can be remapped using the SCC block, refer to section <u>6.1</u>.

5.4.4 ACP port

The processor ACP port can be only accessed by DMA.

5.4.5 DMA controller

The DMAC provides an AXI interface to perform DMA transfers, two APB interfaces that control its operation and setup. Only one APB interface which implements TrustZone® secure technology is connected, the other is unused.

5.4.6 ZBT RAM controller

This is a bridge which converts 64 bit AXI transfers into ZBT SRAM transfers. It based on BP140 with extra AxiRegSlices on the data read site which increases performance. The ZBT SRAM operates synchronously to the AXI domain with no wait states and 2 cycles of latency.

The ZBTRAM memory only supports a read only mode. This is controlled by a control bit in SCC_SYSCFG in the SCC register block. It is targeted for testing hardware break point.

5.4.7 HCLCD controller

The HDLCD controller is used to drive a monitor that can support higher resolutions.

5.4.8 L2C-310 Level 2 Cache

This SMM includes the L2C-310 level 2 cache controller.

5.4.9 CoreSight

The CoreSight Subsystem has been implemented in this SMM. Full details can be found in the section <u>5.2 Debug</u> <u>Features</u> of this document.

5.4.10 Cortex-R7

The Cortex-R7 CPU has been implemented in an MP2 Split-Lock configuration. Details of the processor implementation can be found in section 5.1

5.5 Clock architecture

There are a total of 6 clock domains in this design:

CLKIN

OSC3 is the source for CLKIN which is used to clock CPU and CoreSight components and slow subystem.

MCLK

OSC2 is a source for two MMCM modules. The first MMMC module generates MCLK, MCLKX2 and MCLK90 signals used to clock PL341 DMC controller. The second MMCM is used to generate MCLK_OUT and provides clock to DDR memory devices in phase with MCLK.

SMCLK

The SMCLK is used to drive Static Memory Controller and Static Memory bus. The SMCLK is generated using REFCLK24MHZ clock. The SMCLKIN feedback clock is used to register data from Static memory bus slave implemented on V2M-P1 Versatile *Express* Motherboard.

TRACECLK

TRACECLK is directly connected to OSC4.

ACLK

The OSC0 is the source for asynchronous fast clock which is used to clock second matrix and peripherals.

CLCDCLK

CLCDCLK is directly connected to OSC1. It is reference clock for the HDCLCD controller. The frequency of this clock must be adjusted to match target screen resolution. The frequency of this clock must be adjusted to match target screen resolution.

5.5.1 Default, minimum and maximum operating frequencies

The following table summarizes the operating frequencies of the Cortex-R7 FPGA design.

Clock source	Clock signal	Clock domain	Default (MHz)	Min (MHz)	Max (MHz)
OSC0	ACLK	Fast subsystem	80	2	80
OSC1	CLCDCLK	CLCD	23.75	2	62.5
OSC2	MCLK	DDR	125	110	125
OSC3	CLKIN	CPU, CoreSight, ZBTRAM, slow subsystem	40	40	40
OSC4	TRACECLK	Trace	100	2	100
REFCLK24	SMCLK/SMCLKIN	Static Memory Bus	48	48	48

Table 4 Operating Frequencies

6 MEMORY MAP

The memory map as viewed from the processor is as follows:

The MB peripherals between 0xB0000000 to 0xBF000000 are unique to the implementation on the Versatile Express motherboard V2M-P1.

T	Table 6 - Memory Map		
Start Addr. E	nd Addr.	Default Peripheral	
0x0000 0000 0	x003F FFFF	DMC/SMC	
0x0040 0000 0	x3FFF FFFF	DMC	
0x4000 0000 0	x43FF FFFF	SMC CS0 (NOR)	
0x4400 0000 0	x47FF FFFF	SMC CS1 (NOR)	
0x4800 0000 0	xBBFF FFFF	SMC CS2 (PSRAM)	
0x4C00 0000 0	x4FFF FFFF	SMC CS4 (TBD)	
0x5000 0000 0	x50FF FFFF	ZBT RAM	
0x5100 0000 0	x5FFF FFFF	Reserved	
0x6000 0000 0	x7FFF FFFF	External AXI	
0x8000 0000 0	x9FFF FFFF	Reserved	
0xA000 0000 0	xA000 FFFF	PL111/HDLCD	
0xA001 0000 0	xA001 0FFF	SCC (550t)	
0xA001 1000 0	XA00D FFFF	Reserved	
0xA00E 0000 0	XAOOE OFFF	PL341	
0xA00E 1000 0	XAOOE 1FFF	PL354 SMC	
0xA00E 2000 0	XA00E 2FFF	SCC (760)	
0xA00E 3000 0	XAOOE 3FFF	PL330 DMA	
0xA00E 4000 0	xA02F FFFF	Reserved	
0xA030 0000 0	xA03F FFFF	NIC301 550t	
0xA040 0000 0	XA1FF FFFF	Reserved	
0xA200 0000 0	xA20F FFFF	CS - Main ROM Table	
0xA210 0000 0	xA21F FFFF	CS - ATB Funnel	
0xA220 0000 0	xA22F FFFF	CS - TMC ETF	
0xA230 0000 0	xA23F FFFF	CS - ATB Replicator	
0xA240 0000 0	xA24F FFFF	CS - TMC ETR	
0xA250 0000 0	xA25F FFFF	CS - TPIU	
0xA260 0000 0	xA26F FFFF	CS - STM (apb)	
0xA270 0000 0	xA27F FFFF	CS - CTI	
0xA280 0000 0	xA28F FFFF	CS - TSGEN	
0xA290 0000 0	xA290 0FFF	R7 - CPU ROM Table	
0xA290 1000 0	xA290 FFFF	Reserved	
0xA291 0000 0	xA291 0FFF	R7 - CPU0 Debug	
0xA291 1000 0	xA291 1FFF	R7 - CPU0 PMU	

Table 6 - Memory Map

0xA291 2000	0xA291 2FFF	R7 - CPU1 Debug
0xA291 3000	0xA291 3FFF	R7 - CPU1 PMU
0xA291 4000	0xA291 7FFF	Reserved
0xA291 8000	0xA291 8FFF	R7 - CPU0 CTI
0xA291 9000	0xA291 9FFF	R7 - CPU1 CTI
0xA291 A000	0xA291 BFFF	Reserved
0xA291 C000	0xA291 CFFF	R7 - CPU0 Trace
0xA291 D000	0xA291 DFFF	R7 - CPU1 Trace
0xA291 E000	0xA291 FFFF	Reserved
0xA292 0000	0xA292 FFFF	CS - STM axi
0xA293 0000	0xA5FF FFFF	Reserved
0xA600 0000	0x7FFF FFFF	CPU0
0xA800 0000	0xA9FF FFFF	CPU1
0xAA00 0000	0xABFF FFFF	Reserved
0xAC00 0000	0xADFF FFFF	Reserved
0xAE00 0000	0xAE00 00FF	SCU
0xAE00 0100	0xAE00 0FFF	GIC CPU-IF
0xAE00 1000	0xAE00 1FFF	GIC Distributer-IF
0xAE00 2000	0xAE00 9FFF	Reserved
0xAE00 A000	0xAE00 AFFF	L2CC Config
0xAE00 B000	0xAEFF FFFF	Reserved
0xAEF0 0000	0xAEF0 1FFF	Reserved
0xAEF0 2000	0xAEFF FFFF	Reserved
0xAF00 0000	0xAF0F FFFF	NIC301 760
0xAF10 0000	0xAF10 FFFF	SBCon
0xAF11 0000	0xAFFF FFFF	Reserved
0xB000 0000	0xB3FF FFFF	SMC CS7 (periph)
0xB000 0000	0xB000 0FFF	System Registers
0xB000 1000	0xB000 1FFF	SP810
0xB000 2000	0xB000 2FFF	2Wire (PCle)
0xB000 3000	0xB000 3FFF	Reserved
0xB000 4000	0xB000 4FFF	PL041
0xB000 5000	0xB000 5FFF	PL180
0xB000 6000	0xB000 6FFF	PL050 (0)
0xB000 7000	0xB000 7FFF	PL050 (1)
0xB000 8000	0xB000 8FFF	Reserved
0xB000 9000	0xB000 9FFF	PL011 (0)
0xB000 A000	0xB000 AFFF	PL011 (1)
0xB000 B000	0xB000 BFFF	PL011 (2)
0xB000 C000	0xB000 CFFF	PL011 (3)
0xB000 D000	0xB000 EFFF	Reserved
0xB000 F000	0xB000 FFFF	SP805 (0)

CPU	
0xAE00 0000	
0xAE00 0000	
OxAEFF FFFF	
L2CC	
0xAE00 A000	

0xB001 0000	0xB001 FFFF	Reserved
0xB001 1000	0xB001 1FFF	SP804 (0)
0xB001 2000	0xB001 2FFF	SP804 (1)
0xB001 3000	0xB001 5FFF	Reserved
0xB001 6000	0xB001 6FFF	2Wire (DVI)
0xB001 7000	0xB001 7FFF	PL031
0xB001 8000	0xB001 9FFF	Reserved
0xB001 A000	0xB001 AFFF	CF Card
0xB001 B000	0xB001 BFFF	PL011 (4)
0xB001 C000	0xB001 EFFF	Reserved
0xB001 F000	0xB001 FFFF	PL111
0xB002 0000	0xB3FF FFFF	Reserved
0xB400 0000	0xB7FF FFFF	SMC CS6
0xB800 0000	OxBBFF FFFF	SMC CS5
0xBC00 0000	OxBFFF FFFF	SMC CS3 Pheripherals
0xBC00 0000	OxBDFF FFFF	Video RAM
0xBE00 0000	OxBEFF FFFF	Ethernet
0xBF00 0000	OxBFFF FFFF	USB
0xC000 0000	OxFEFF FFFF	External AXI
0xFF00 0000	OxFFFF FFFF	ZBT RAM (aliased)

6.1 SCC/APB Register block

A number of registers are implemented for system control. The registers can be accessed by the APB bus as well as by the SCC interface. The SCC interface allows initialization during power up sequence by values from the daughter board configuration file. The board configuration file is user editable and can therefore be used to modify the default values of any one of the SCC control registers.

Table	7	SCC	Register	block
-------	---	-----	----------	-------

Offset Address	Register	Descriptions
0x000	Reserved	Bits [31:5] Reserved
		Bit[4:0] – Reserved.
0x004	PL354 SMC Re-Map Control	Bit [31:1] Reserved.
		Bit [0] – PL354 SMC Re-Map Control.
		0 = NOR FLASH1 mapped to address 0x0.
		1 = NOR FLASH0 mapped to address 0x0.
		The default is Bit[0] =1.
0x008	SCC_CPU0CTRL	Control bits for CPU0.
		Bits [31:15] Reserved
		Bit[14] nCPUHALT[0]
		Bit[13] DGBCLKOFF[0]
		Bit[12] INITRAM0
		Bit[11] Controls teinit_i
		Bit[10] Controls vinithi_i
		Bit[9] Controls cfgend_i
		Bit[8] Controls cp15sdisable_i
		Bit[7:1] Reserved
		Bit[0] : Processor enable. If it is cleared, processor will be in reset state.
		If this register is not setup by the board configuration file, these bits are reset as 0x1 (enabled), and cannot be changed unless LT_LOCK is written as 0xA05F.
0x00C	SCC_CPU1CTRL	Control bits for CPU1.
		Bits [31:15] Reserved
		Bit[14] nCPUHALT[1]
		Bit[13] DBGCLKOFF[1]
		Bit[12] INITRAM1
		Bit[11] Controls teinit_i
		Bit[10] Controls vinithi_i
		Bit[9] Controls cfgend_i
		Bit[8] Controls cp15sdisable_i
		Bit[7:1] Reserved
		Bit[0] : Processor enable. If it is cleared, processor will be in reset state.
		If this register is not setup by the board configuration file, these bits are reset as 0x1 (enabled), and cannot be changed unless LT_LOCK is written as 0xA05F.
0x010	General CPU control	Bits [31:5] Reserved
		Bit[4] COMPENABLE
		Bit[3] SAFEMODE

		Bit[2:0] MAXCLKLATENCY
0x014	Reserved	Bits [31:0] Reserved
0x018	Reserved	Bits [31:0] Reserved
0x01C	SCC DMACTRL	Bits [31:8] Reserved
		Bits [7:0] : Set to 1 to mask write byte strobe signal from DMA controller. These bits are set 0x0 after reset.
		If this register is not setup by board configuration file, it resets as 0x0, and cannot be changed unless LT_LOCK is written as 0xA05F.
0x020	SCC_ACPCTRL	Bits [31:22]. Reserved
		Bits [21:16] : Set up awuser signal on ACP bus to control write inner attributes, inner & outer shareability
		Bits [15:6] Reserved.
		Bits [5:0]. Set up aruser signal on ACP bus to control read inner attributes, inner & outer shareability
		If this register is not setup by board configuration file, it resets as 0x0.
0x040	SCC_TUBE	Text output register (for retargeting in simulation only).
0x100	SCC_DLL	DLL lock register
		Bits [31:24] DLL LOCK MASK[7:0] - These bits indicate if the DLL locked is masked.
		Bits [23:16] DLL LOCK MASK[7:0] - These bits indicate if the DLLs are locked or unlocked.
		Bits [15:1] : Reserved
		Bit[0] This bit indicates if all enabled DLLs are locked:
0x104	SCC_LED	Bits [31:8] Reserved
		Bits [7:0] : These bits control the V2F LEDs
0x108	SCC_SW	Bits [31:8] Reserved
		Bits [7:0] : These bits indicate state of the V2F user switches
0x120	SCC_LOCK	Write: write 0xA05F to this register to unlock access to a number of APB register. Only lowest 16-bit is implemented.
		Read : Return current value (bit [15:0])and Unlock status (bit [16]).
		Reset value of this register is 0x00000000.
		The write is only possible via APB bus.
0xFF8	SCC_AID	SCC AID register is read only
		Bits[31:24] FPGA build number
		Bits[23:11] Reserved
		Bit[10] if "1" SCC_SW register have been implemented
		Bit[9] if "1" SCC_LED register have been implemented Bit[8] if "1" DLL lock register have been implemented
0xFFC	SCC_ID	Bits[7:0] number of SCC config register SCC ID register is read only
UNEFU		Bits[31:24] Implementer ID: 0x41 = ARM
		Bits[23:20] IP Variant Number
		Bits[19:16] IP Architecture: 0x5 =AXI
		Bits[11:4] Primary part number: C0f = CortexA15 Bits[3:0] IP Revision number

7 INTERRUPTS AND EVENTS SIGNALS

7.1 Interrupts

The system contains a GIC (Generic Interrupt Controller – PL390). The controller is generated using the following parameters:

SGI = 2 PPI = 16 SPI = 128

The interrupt signal assignments on the interrupt input in R7 integration level are:

Signal	Descriptions
SPI	Bit[127:68] : Tied low
	Bit[67] : COMMTX1
	Bit[66] : COMMTX0
	Bit[65] : COMMRX1
	Bit[64] : COMMRX0
	Bit[63] : PMUIRQ[3] (tied low)
	Bit[62] : PMUIRQ[2] (tied low)
	Bit[61] : PMUIRQ[1] (inverted of nPMUIRQ[1])
	Bit[60] : PMUIRQ[0] (inverted of nPMUIRQ[0])
	Bit[59] : Tied low (PCIe not implemented)
	Bit[58] : Tied low (PCIe not implemented)
	Bit[57] : Tied low (PCIe not implemented)
	Bit[56] : Tied low (PCIe not implemented)
	Bit[55] : DMAC_IRQ[1]
	Bit[54] : DMAC_IRQ[0]
	Bit[53] : Tied low. TrustZone not implemented
	Bit[52] : DMAC_IRQ_ABORT
	Bit[51] : Tied low. Watchdog not implemented
	Bit[50] : Tied low. GPIO not implemented
	Bit[49] : Tied low. Timer1 not implemented
	Bit[48] : Tied low. Timer0 not implemented
	Bit[47] : Tied low. Reserved
	Bit[46] : SMC1_INT
	Bit[45] : SMC0_INT
	Bit[44] : CLCD interrupt
	Bit[43] : L2 combine interrupt
	Bit[42:0] : SB_IRQ[42:0]

Table 8 - Interrupt map.